Abstract
LAC, a Ring-LWE based scheme, has shortlisted for the second round evaluation of the National Institute of Standards and Technology Post-Quantum Cryptography (NIST-PQC) Standardization. FPGAs are widely used to design accelerators for cryptographic schemes, especially in resource-constrained scenarios, such as IoT. Sparse Polynomial Multiplication (SPM) is the most compute-intensive routine in LAC. Designing an accelerator for SPM on FPGA can significantly improve the performance of LAC. However, as far as we know, there are currently no works related to the hardware implementation of SPM for LAC. In this paper, the proposed efficient and scalable SPM accelerator fills this gap. More concretely, we firstly develop the Dual-For-Loop-Parallel (DFLP) technique to optimize the accelerator's parallel design. This technique can achieve 2x performance improvement compared with the previous works. Secondly, we design a hardware-friendly modular reduction algorithm for the modulus 251. Our method not only saves hardware resources but also improves performance. Then, we launch a detailed analysis and optimization of the pipeline design, achieving a frequency improvement of up to 34%. Finally, our design is scalable, and we can achieve various performance-area trade-offs through parameter p. Our results demonstrate that the proposed design can achieve a very considerable performance improvement with moderate hardware area costs. For example, our medium-scale architecture for LAC-128 takes only 783 LUTs, 432 FFs, 5BRAMs, and no DSP on an Artix-7 FPGA and can complete LAC's polynomial multiplication in 8512 cycles at a frequency of 202MHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.