Abstract

Accurate calculation of absorption spectra of aqueous NO2- requires rigorously sampling the quantum potential energy surfaces for microsolvation of NO2- with at least five explicit water molecules and embedding the resulting clusters in a continuum solvent accounting for the statistical weighted contributions of individual isomers. This method, which we address as ASCEC + PCM, introduces several desired features when compared against MD simulations derived QM/MM spectra: comparatively fewer explicit solvent molecules to be treated with expensive QM methods, the identification of equilibrium structures in the quantum PES to be used in further vibrational spectroscopy, and the unequivocal identification of cluster orbitals undergoing electronic transitions and charge transfer that originate the spectral bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.