Abstract

As an efficient meta-heuristic algorithm, the whale optimization algorithm (WOA) has been extensively applied to practical problems. However, WOA still has the drawbacks of converging slowly, and jumping out from extreme points especially for large scale optimization problems. To overcome these defects, a modified whale optimization algorithm integrated with a crisscross optimization algorithm (MWOA-CS) is proposed. In MWOA-CS, each dimension of the optimization problem updates its position by randomly performing improved WOA or crisscross optimization algorithm during the entire iterative process. The improved WOA adopts the new nonlinear convergence factor and nonlinear inertia weight to tune the ability of exploitation and exploration. To analyze the performance of MWOA-CS, a series of numerical experiments were performed on 30 test benchmark functions with dimension ranging from 300 to 1000. The experimental results revealed that the presented MWOA-CS provided better convergence speed and accuracy, and meanwhile, displayed a significantly more effective and robust performance than the original WOA and other state of the art meta-heuristic algorithms for solving large scale global optimization problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call