Abstract
PurposeIn this paper, the formulation and analytic solutions for fractional continuously variable order dynamic models, namely, fractional continuously mass-spring damper (continuously variable fractional order) systems, have been presented. The authors will demonstrate via two cases where the frictional damping given by fractional derivative, the order of which varies continuously – while the mass moves in a guide. Here, the continuously changing nature of the fractional-order derivative for dynamic systems has been studied for the first time. The solutions of the fractional continuously variable order mass-spring damper systems have been presented here by using a successive recursive method, and the closed form of the solutions has been obtained. By using graphical plots, the nature of the solutions has been discussed for the different cases of continuously variable fractional order of damping force for oscillator. The purpose of the paper is to formulate the continuously variable order mass-spring damper systems and find their analytical solutions by successive recursion method.Design/methodology/approachThe authors have used the viscoelastic and viscous – viscoelastic dampers for describing the damping nature of the oscillating systems, where the order of the fractional derivative varies continuously.FindingsBy using the successive recursive method, here, the authors find the solution of the fractional continuously variable order mass-spring damper systems, and then obtain close-form solutions. The authors then present and discuss the solutions obtained in the cases with the continuously variable order of damping for an oscillator through graphical plots.Originality/valueFormulation of fractional continuously variable order dynamic models has been described. Fractional continuous variable order mass-spring damper systems have been analysed. A new approach to find solutions of the aforementioned dynamic models has been established. Viscoelastic and viscous – viscoelastic dampers are described. The discussed damping nature of the oscillating systems has not been studied yet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.