Abstract
Non-precious NiO nanoparticles were combined with carbon fibers (CFs) to design the novel electrode material; NiO-CFs. The as-synthesized NiO-CFs material was investigated in terms of Field emission scanning electron microscope (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) surface area, Energy-dispersive X-ray spectroscopy (EDX), UV–vis spectra, Transmission electron microscope (TEM), selected area diffraction (SAED) pattern and X-ray diffraction (XRD) techniques. These analyses indicate the successful synthesis of a nanocomposite of NiO-CFs. Cyclic voltammetry (CV) in addition to chronoamperometric (CA) and electrochemical impedance spectroscopy (EIS) methods were studied in the 3-electrodes system to examine the electrochemical performance of NiO-CFs material for urea oxidation in KOH medium. The synthesized nanocomposite showed improved electrochemical oxidation of urea at various urea concentrations up to 1.5 M. The decreasing of both charge transfer impedance and series resistance indicates the enhanced transfer of electrons in the occurrence of urea which could be related to the high electrochemical performance of NiO-CFs material as an electrocatalyst. The superior electrochemical activity can be due to the assembly of C-structure with NiO nanoparticles during the synthesis steps which enhance electrocatalysis, charge transfer, and structural defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.