Abstract

This paper develops a modular modeling and efficient formulation of launch dynamics with marching fire (LDMF) using a mixed formulation of the transfer matrix method for multibody systems (MSTMM) and Newton-Euler formulation. Taking a ground-borne multiple launch rocket systems (MLRS), the focus is on the launching subsystem comprising the rocket, flexible tube, and tube tail. The launching subsystem is treated as a coupled rigid-flexible multibody system, where the rocket and tube tail are treated as rigid bodies while the flexible tube as a beam with large motion. Firstly, the tube and tube tail can be elegantly handled by the MSTMM, a computationally efficient order-N formulation. Then, the equation of motion of the in-bore rocket with relative kinematics w.r.t. the tube using the Newton-Euler method is derived. Finally, the rocket, tube, and tube tail dynamics are coupled, yielding the equation of motion of the launching subsystem that can be regarded as a building block and further integrated with other subsystems. The deduced dynamics equation of the launching subsystem is not limited to ground-borne MLRS but also fits for tanks, self-propelled artilleries, and other air-borne and naval-borne weapons undergoing large motion. Numerical simulation results of LDMF are given and partially verified by the experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.