Abstract

Explicit topology optimization methods have received ever-increasing interest in recent years. In particular, a 188-line Matlab code of the two-dimensional (2D) Moving Morphable Component (MMC)-based topology optimization method was released by Zhang et al. (Struct Multidiscip Optim 53(6):1243-1260, 2016). The present work aims to propose an efficient and easy-to-extend 256-line Matlab code of the MMC method for three-dimensional (3D) topology optimization implementing some new numerical techniques. To be specific, by virtue of the function aggregation technique, accurate sensitivity analysis, which is also easy-to-extend to other problems, is achieved. Besides, based on an efficient identification algorithm for load transmission path, the degrees of freedoms (DOFs) not belonging to the load transmission path are removed in finite element analysis (FEA), which significantly accelerates the optimization process. As a result, compared to the corresponding 188-line 2D code, the performance of the optimization results, the computational efficiency of FEA, and the convergence rate and the robustness of optimization process are greatly improved. For the sake of completeness, a refined 218-line Matlab code implementing the 2D-MMC method is also provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call