Abstract

The Cahn--Hilliard equation is a widely used model that describes amongst others phase separation processes of binary mixtures or two-phase flows. In the recent years, different types of boundary conditions for the Cahn--Hilliard equation were proposed and analyzed. In this publication, we are concerned with the numerical treatment of a recent model which introduces an additional Cahn--Hilliard type equation on the boundary as closure for the Cahn--Hilliard equation in the domain [C. Liu, H. Wu, Arch. Ration. Mech. An., 2019]. By identifying a mapping between the phase-field parameter and the chemical potential inside of the domain, we are able to postulate an efficient, unconditionally energy stable finite element scheme. Furthermore, we establish the convergence of discrete solutions towards suitable weak solutions of the original model. This serves also as an additional pathway to establish existence of weak solutions. Furthermore, we present simulations underlining the practicality of the proposed scheme and investigate its experimental order of convergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.