Abstract
As the demand for /spl Delta//spl Sigma/ (delta-sigma) analog-to-digital converters (ADCs) with higher bandwidth and higher signal-to-noise ratio (SNR) increases, designers have to look for efficient structures with low oversampling ratio (OSR). The Leslie-Singh or M-0 MASH architecture is often used in such applications. Based on this architecture, a reduced-sample-rate structure was introduced, which needs less chip area and power, but increases the noise floor. This paper describes a modification of the reduced-sample-rate structure which realizes an optimized transfer function, and avoids an SNR loss. In fact, it increases the SNR for high-order modulators. The method can also be applied to one-stage modulators. Simulation results for different MASH ADCs and sensitivity analysis verify the usefulness of the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.