Abstract
In this work, a new algorithm for solving symmetric indefinite systems of linear equations is presented. It factorizes the matrix into the form LDLt using Jacobi rotations in order to increase the pivot´s absolute value. Furthermore, Rook´s pivoting strategy is also adapted and implemented. In determinate compatible systems, the computational cost of the algorithm was similar to the cost of the Bunch-Kaufman method, but the error was approximately 50 % smaller for intermediate and large matrices, regardless of the condition number of the coefficient matrix. Furthermore, unlike Bunch-Kaufman, the new algorithm calculates with little additional cost the fundamental basis of the null space, and obtains the minimal least squares and minimum norm solutions. In minimal least squares with minimum norm problems, the new algorithm was compared with the LAPACK Complete Orthogonal Decomposition algorithm, among others. The obtained error with both algorithms was similar but the computational cost was at least 20 % smaller with the new algorithm, even though the Complete Orthogonal Decomposition is implemented in a blocked form.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.