Abstract
The optimization of nonlinear systems subject to linear terminal state variable constraints is considered. A technique for solving this class of problems is proposed that involves a piecewise polynomial parameterization of the system variables. The optimal control problem is thereby reduced to a linearly constrained parameter optimization problem which can be solved efficiently using the quadratically convergent Gold-farb-Lapidus algorithm. Illustrative numerical examples are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.