Abstract

Real-time applications demand fast computation, this paper proposes an efficient algorithm for real-time network reconfiguration on large unbalanced distribution networks. A novel formulation of the network reconfiguration to achieve loss minimization and load balancing is given. To reduce computational requirements for the solution algorithm, well justified power flow and loss reduction formulas in terms of the on/off status of network switches are proposed for efficient system updating. The algorithm relies only on a few full power flow studies based on system states attained by explicit expressions using backward-forward sweeps for efficient computation of the system's states at the critical system operating points. The solution algorithm runs in an amount of time linearly proportional to the number of the switches and the number of sectionalizing switches in the system. The solution algorithm has been implemented into a software package and tested on unbalanced distribution systems including a system with 292-buses, 76-laterals, 7 transformers, 45 switches and 255 line sections under diverse system conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.