Abstract

ABSTRACT Many problems in statistics and machine learning can be formulated as an optimization problem of a finite sum of nonsmooth convex functions. We propose an algorithm to minimize this type of objective functions based on the idea of alternating linearization. Our algorithm retains the simplicity of contemporary methods without any restrictive assumptions on the smoothness of the loss function. We apply our proposed method to solve two challenging problems: overlapping group lasso and convex regression with sharp partitions. Numerical experiments show that our method is superior to the state-of-the-art algorithms, many of which are based on the accelerated proximal gradient method. Supplementary materials for this article are available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.