Abstract
We present an efficient algorithm for recent generalizations of optimal mass transport theory to matrix-valued and vector-valued densities. These generalizations lead to several applications including diffusion tensor imaging, color image processing, and multi-modality imaging. The algorithm is based on sequential quadratic programming. By approximating the Hessian of the cost and solving each iteration in an inexact manner, we are able to solve each iteration with relatively low cost while still maintaining a fast convergence rate. The core of the algorithm is solving a weighted Poisson equation, where different efficient preconditioners may be employed. We utilize incomplete Cholesky factorization, which yields an efficient and straightforward solver for our problem. Several illustrative examples are presented for both the matrix and vector-valued cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.