Abstract
One of the most difficult aspect of the realistic modeling of granular materials is how to capture the real shape of the particles. Here we present a method to simulate two-dimensional granular materials with complex-shaped particles. The particle shape is represented by the classical concept of a Minkowski sum, which permits the representation of complex shapes without the need to define the object as a composite of spherical or convex particles. A well defined interaction force between these bodies is derived. The algorithm for identification of neighbor particles reduces force calculations to O(N), where N is the number of particles. The method is much more efficient, accurate and easier to implement than other models. We prove that the algorithm is consistent with energy conservation, which is numerically verified using non-dissipative granular dynamics simulations. Biaxial test simulations on dissipative granular systems demonstrate the relevance of shape in the strength and stress fluctuations at the critical state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.