Abstract
System and survival signatures are important and popular tools for studying and analysing the reliability of systems. However, it is difficult to compute these signatures for systems with complex reliability structure functions and large numbers of components. This paper presents a new algorithm that is able to compute exact signatures for systems that are far more complex than is feasible using existing approaches. This is based on the use of reduced order binary decision diagrams (ROBDDs), multidimensional arrays and the dynamic programming paradigm. Results comparing the computational efficiency of deriving signatures for some example systems (including complex benchmark systems from the literature) using the new algorithm and a comparison enumerative algorithm are presented and demonstrate a significant reduction in computation time and improvement in scalability with increasing system complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.