Abstract

Over the years, frequent itemset discovery algorithms have been used to find interesting patterns in various application areas. However, as data mining techniques are being increasingly applied to nontraditional domains, existing frequent pattern discovery approaches cannot be used. This is because the transaction framework that is assumed by these algorithms cannot be used to effectively model the data sets in these domains. An alternate way of modeling the objects in these data sets is to represent them using graphs. Within that model, one way of formulating the frequent pattern discovery problem is that of discovering subgraphs that occur frequently over the entire set of graphs. We present a computationally efficient algorithm, called FSG, for finding all frequent subgraphs in large graph data sets. We experimentally evaluate the performance of FSG using a variety of real and synthetic data sets. Our results show that despite the underlying complexity associated with frequent subgraph discovery, FSG is effective in finding all frequently occurring subgraphs in data sets containing more than 200,000 graph transactions and scales linearly with respect to the size of the data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.