Abstract
Detecting communities in social networks represents a significant task in understanding the structures and functions of networks. Several methods are developed to detect disjoint partitions. However, in real graphs vertices are often shared between communities, hence the notion of overlap. The study of this case has attracted, recently, an increasing attention and many algorithms have been designed to solve it. In this paper, we propose an overlapping communities detecting algorithm called DOCNet (Detecting overlapping communities in Networks). The main strategy of this algorithm is to find an initial core and add suitable nodes to expand it until a stopping criterion is met. Experimental results on real-world social networks and computer-generated artificial graphs demonstrate that DOCNet is efficient and highly reliable for detecting overlapping groups, compared with four newly known proposals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.