Abstract

Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone “Nanlin895” (Populus deltoides × P. euramericana) with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis.

Highlights

  • Poplar is a versatile tree species that is highly amenable to vegetative propagation, has a rapid growth rate and is a good model system for the transformation of woody plant species

  • Other factors affecting transformation efficiency evaluated in this study included the preculture of wounded explants, Agrobacterium infective suspension concentration, Agrobacterium infection duration, Agrobacterium infective suspension pH, acetosyringone (AS) concentration, cold treatment of an Agrobacterium infective suspension, cocultivation incubation temperature and duration and sucrose concentration in cocultivation medium

  • We examined the effect of the duration of immersion in Agrobacterium infective suspensions on the transformation efficiency

Read more

Summary

Introduction

Poplar is a versatile tree species that is highly amenable to vegetative propagation, has a rapid growth rate and is a good model system for the transformation of woody plant species. The benefits of improved transformation methods include the insertion of intact full-length cDNAs into the plant genome, a reduction in the number of undesirable mutations and an increased transgene copy number [4]. For these reasons, many efforts have been made to improve. Other factors affecting transformation efficiency evaluated in this study included the preculture of wounded explants, Agrobacterium infective suspension concentration, Agrobacterium infection duration, Agrobacterium infective suspension pH, acetosyringone (AS) concentration, cold treatment of an Agrobacterium infective suspension, cocultivation incubation temperature and duration and sucrose concentration in cocultivation medium. The transformation efficiency is expressed as the percentage of independently transformed explants relative to the total number of explants

Optimization of Poplar Regeneration
Improvement of Agrobacterium-Mediated Transformation Efficiency
Southern and Northern Blot Analyses
Plant Materials and Agrobacterium Strain
Optimization of Regeneration Medium for Poplar
Agrobacterium-Mediated Transformation
Statistical Analysis
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.