Abstract

This article proposes the load-level-based admission control (LLAC) mechanism in order to provide service differentiation for optical burst-switched networks. The LLAC mechanism admits bursts of a given service class according to the network load and a class-associated parameter. Based on this parameter, called load level, the proposed mechanism differentiates the burst blocking probability experienced by each service class. We develop an analytical model for the proposed mechanism and evaluate its performance for different configurations through mathematical analysis. The results show that the load-level-based mechanism reduces the blocking probability of high-priority bursts by two orders of magnitude or more depending on the analyzed scenario. In addition, compared to other similar mechanisms, the load-level-based mechanism effectively differentiates the services in all analyzed configurations, requires less states in optical burst switching (OBS) nodes, and does not suffer from priority inversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.