Abstract

With the advances in wireless communication technology and the advent of smartphones, research on location-based services (LBSs) is being actively carried out. In particular, several spatial index methods have been proposed to provide efficient LBSs. However, finding an optimal indexing method that balances query performance and index size remains a challenge in the case of wireless environments that have limited channel bandwidths and device resources (computational power, memory, and battery power). Thus, mechanisms that make existing spatial indexing techniques more efficient and highly applicable in resource-limited environments should be studied. Bitmap-based Spatial Indexing (BSI) has been designed to support LBSs, especially in wireless broadcast environments. However, the access latency in BSI is extremely large because of the large size of the bitmap, and this may lead to increases in the search time. In this paper, we introduce a Selective Bitmap-based Spatial Indexing (SBSI) technique. Then, we propose an Adaptive Bitmap-based Spatial Indexing (ABSI) to improve the tuning time in the proposed SBSI scheme. The ABSI is applied to the distribution of geographical objects in a grid by using the Hilbert curve (HC). With the information in the ABSI, grid cells that have no objects placed, (i.e., 0-bit information in the spatial bitmap index) are not tuned during a search. This leads to an improvement in the tuning time on the client side. We have carried out a performance evaluation and demonstrated that our SBSI and ABSI techniques outperform the existing bitmap-based DSI (B?DSI) technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.