Abstract
Recent advances in wireless sensor networks for ubiquitous health and activity monitoring systems have triggered the possibility of addressing human needs in smart environments through recognizing human real-time activities. While the nature of streams in such networks requires efficient recognition techniques, it is also subject to suspicious inference-based privacy attacks. In this paper, we propose a framework that efficiently recognizes human activities in smart homes based on spatiotemporal mining technique. In addition, we propose a technique to enhance the privacy of the collected human sensed activities using a modified version of micro-aggregation approach. An extensive validation of our framework has been performed on benchmark data sets yielding quite promising results in terms of accuracy and privacy-utility tradeoff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.