Abstract

ObjectiveRecombinant adeno-associated virus (rAAV) vectors are powerful tools for the sustained expression of proteins in vivo and have been successfully used for mechanistic studies in mice. A major challenge associated with this method is to obtain tissue specificity and high expression levels without need of local virus administration. MethodsTo achieve this goal for brown adipose tissue (BAT), we developed a rAAV vector for intravenous bolus injection, which includes an expression cassette comprising an uncoupling protein-1 enhancer-promoter for transcription in brown adipocytes and miR122 target sequences for suppression of expression in the liver, combined with packaging in serotype Rec2 capsid protein. To test tissue specificity, we used a version of this vector expressing Cre recombinase to transduce mice with floxed alleles to knock out MLXIPL (ChREBP) or tdTomato-Cre reporter mice. ResultsWe demonstrated efficient Cre-dependent recombination in interscapular BAT and variable effects in minor BAT depots, but little or no efficacy in white adipose tissues, liver and other organs. Direct overexpression of glucose transporter SLC2A1 (GLUT1) using the rAAV vector in wild type mice resulted in increased glucose uptake and glucose-dependent gene expression in BAT, indicating usefulness of this vector to increase the function even of abundant proteins. ConclusionTaken together, we describe a novel brown adipocyte-specific rAAV method to express proteins for loss-of-function and gain-of-function metabolic studies. The approach will enable researchers to access brown fat swiftly, reduce animal breeding time and costs, as well as enable the creation of new transgenic mouse models combining multiple transgenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.