Abstract

Homogenization theory forms the basis for solving the topology optimization problem (TOP) formulated for designing composite materials. Homogenization is proved to be an efficient approach to effectively determine the equivalent macroscopic properties of the composite material. It relies on the assumption that the composite material presents a periodic pattern on a microstructural level; the simplest repeating unit of the microstructure, that if isolated represents exactly the macroscopic behaviour of the material, is called the $$unit\ cell$$ . Scope of homogenization is to determine the macroscopic (or else effective) properties of the non-homogeneous unit cell, that is, determine the properties of the unit cell as if it was composed by homogeneous material. In this study, a simple methodology is proposed where homogenization is implemented on a 3D lattice unit cell, with its radius being considered as the alternating parameter for the homogenization procedure; different values of the radius result to different unit cell configurations and hence, to different equivalent properties. A fitting process takes place in order to appropriately model the variations of the obtained effective properties w.r.t the design parameter. The corresponding, homogenization-based TOP is formed and the accuracy of the proposed methodology is assessed on several case studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call