Abstract

This brief presents circuit techniques to improve the power efficiencies of a discontinuous-conduction mode (DCM) buck regulator for portable applications. A switched-capacitorcomparator-based adaptive dead-time control is developed to provide fast and accurate sensing and comparison for optimizing the switching timing of power transistors and thus simultaneously minimizing the power losses caused by the reverse inductor current, body-diode conduction, and shoot-through current. A new ringing suppression circuit is also proposed not to affect the dead-time of power transistors during switching instants for additional power savings. Implemented in a 0.35-¿m standard CMOS process, the proposed DCM buck regulator has only ¿20-ns sensing delay and achieves > 84% power efficiency for load currents of > 5 mA when the input voltage is 1.8 V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.