Abstract

An efficient and ecofriendly effervescence-assisted emulsification microextraction approach based on hydrophobic deep eutectic solvent (EA-EME-DES) was developed for the sensitive chromatographic determination of parabens (i.e., methyl-, ethyl-, propyl- and butylparaben) in foodstuffs. The DES extractant consisted of methyltrioctyl ammonium chloride (MTAC) and decanoic acid (DecA) (1:3, mol/mol), and had high hydrophobicity, solubility and stability. During the microextraction procedure, sodium carbonate was introduced to facilitate the dissolution of parabens in aqueous solution, DES dispersion and phase separation by enhancing solution pH and generating CO2 bubbles. The developed method exhibited satisfactory linearity (R2 ≥ 0.9986), detection limits (0.01–0.03 μg/g), quantitation limits (0.04–0.09 μg/g), recoveries (87.8% to 111%, with RSDs of 0.8% to 5%) and negligible matrix effects, hence it had remarkable effectiveness and applicability in determining parabens in complex foodstuffs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.