Abstract

This investigation provides outcome of utilizing educational data mining [EDM] to design academic performance of students from real time and online dataset collected from colleges. Data mining is determined to examine non-academic and academic data; this model utilizes a classification approach termed as Fuzzy SVM classification with Genetic algorithm to attain effectual understanding of association rule in enrolment and to evaluate data quality for classification, which is identified as prediction task of performance and academic status based on low academic performance. This model attempts to predict student’s performance in grading system. Academic and student records attained from process were considered to train models estimated using cross-validation and formerly records from complete academic performance. Simulation was performed in MATLAB environment and show that academic status prediction is enhanced while hybrid dataset are added. The accuracy was compared with the existing models and shows better trade off than those methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.