Abstract

Thermodynamic and magnetic properties of a trilayer nanostructure of hexagonal lattices described by the spin-1/2 Ising model are investigated by the use of the effective-field theory (EFT) with correlations. The results for the magnetization, the free energy, the internal energy, the entropy, the specific heat and the critical frontiers were obtained. The critical temperature and the compensation temperature are investigated with a negative interlayer coupling, in order to clarify the distinction between the ferromagnetic and ferrimagnetic behaviors. From the thermal variations of the total magnetization, the six compensation types can be found, i.e., L-, Q-, R-, S-, P-, and N-types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.