Abstract

Herein, MoO2-based submicrons (named MoO2@C) are synthesized through an effective one-step hydrothermal process. The prepared MoO2 submicrons wrapped in carbonouse layer are uniformly produced and can be applied to the anodes in lithium-ion batteries (LIBs). The novel MoO2@C electrodes demonstrate attractive lithium storage ability. Moreover, compared with the commercial pure MoO2, the MoO2@C delivers a superior electrochemical capacity (e.g, 760.83 mAh g-1 capacity in long-life test at high rate of 1 A g-1) with outstanding capacity retention ratio and stability as well as rate capability. The superior lithium storage capabilities result from plenty of the Li+ sites and adequate electrolyte infiltration effect, which allows the fast transport of electrons and ions, and well-dispersed MoO2 submicrons in carbon-based layers that effectively prevents aggregation of nano size particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call