Abstract

This article focuses on the identification of key features that are responsible for the discrepancies in the performance of silicon solar cells fabricated on multicrystalline silicon under the identical conditions. In an experimental approach, direct current (DC) measurement coupled with alternating current (AC) characterisation technique has been employed. The scanning electron microscope analysis reveals an average grain size of few micrometres for all the solar cells and the top surface of least efficient solar cell contains the impurity precipitates with deep cone shaped holes or pits. The DC measurement reveals that the photocurrent density loss follows an exponential behaviour with respect to the current–voltage characteristics for all the solar cells. The analysis of −dV/dJ versus (JSC−J)−1 plot and the variation of ideality factor with junction voltage demonstrate that the higher resistive and recombination losses dominate the performance of least efficient solar cell. Impedance Spectroscopy (IS) technique is used to quantify and decouple the various photovoltaic parameters associated with the different physical processes. A lower value of shunt resistance and minority carrier lifetime along with the higher value of series resistance contribute to the higher resistive loss and surface recombination. The experimental results along with the analytical model provide an insight into the loss mechanisms and the use of a simple tool that can be integrated with the conventional photovoltaic testing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.