Abstract

The distributed assembly blocking flow-shop scheduling problem (DABFSP), which is a promising area in modern supply chains and manufacturing systems, has attracted great attention from researchers and practitioners. However, minimizing the total tardiness in DABFSP has not captured much attention so far. For solving the DABFSP with the total tardiness criterion, a mixed integer linear programming method is utilized to model the problem, wherein the total tardiness during the production process and assembly process are optimized simultaneously. A constructive heuristic (KBNEH) and a water wave optimization algorithm with problem-specific knowledge (KWWO) are presented. KBNEH is designed by combining a new dispatching rule with an insertion-based improvement procedure to obtain solutions with high quality. In KWWO, effective technologies, such as the re-developed destruction–construction​ operator, four local search methods under the framework of the variable neighborhood search strategy (VNS), the path-relinking method are applied to improve the performance of the algorithm. Comprehensive numerical experiments based on 900 small-scale benchmark instances and 810 large-scale benchmark instances are conducted to evaluate the performance of the presented algorithm. The experimental results obtained by KWWO are 1 to 4 times better than those obtained by the other comparison algorithms, which demonstrate that the effectiveness of KWWO is superior to the compared state-of-the-art algorithms for the considered problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.