Abstract

In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.