Abstract

The important factors affecting the dynamic response of saturated sand layers to earthquake motions are: (1)The initial shear modulus in situ; (2)the variation of shear modulus with shear strain; (3)contemporaneous generation and dissipation of pore-water pressures; (4)changes in effective mean normal stress; (5)damping; and (6)hardening. Constitutive relations are formulated that take all these factors into account and these are incorporated into a nonlinear method for the dynamic effective stress analysis of saturated sands. The method predicts the phenomenological features of the dynamic response of saturated sand layers that commonly occur as the pore-water pressure rises in the sand during earthquake shaking. It allows the distribution of pore-water pressure and the effects that drainage and internal flow have on the location and time of liquefaction to be determined quantitatively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.