Abstract

An effective stress constitutive model to study the problem numerically of creep in the field is presented. A double-yield surface model for the stress–strain–time behaviour of wet clay is described. The model adopts the concept of separating the total deformation into immediate and delayed components. The yield surfaces employed are the modified Cam-clay ellipsoid and the Von Mises cylinder inscribed in the ellipsoid. The proposed numerical scheme incorporates the pore pressure based on field observations into a finite element analysis. An interpolation technique is used to determine the pore pressure at every element. A field example is presented to illustrate the interpolation technique procedure. The scheme not only avoids the complexity of making predictions of pore-water pressure, but also allows the analysis to be carried out in terms of effective stresses based on the actual observed pore pressure. Two stress integration algorithms based on the implicit calculation of plastic strain are implemented and tested for the double-yield surface model. A numerical simulation of stress-controlled drained creep tests confirms the numerical procedure. Key words : constitutive equations, creep, finite element, stress integration algorithms, effective stress approach, pore-water pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call