Abstract

In the healthcare industry, the ability to monitor patients via biomedical signals assists healthcare professionals in detecting early signs of conditions such as blocked arteries and abnormal heart rhythms. Using data clustering, it is possible to interpret these signals to look for patterns that may indicate emerging or developing conditions. This can be accomplished by basing monitoring systems on a fast clustering algorithm that processes fast-paced streams of raw data effectively. This paper presents a clustering method, POD-Clus, which can be useful in computer-aided diagnosis. The proposed method clusters data streams in linear time and outperforms a competing algorithm in capturing changes of clusters in data streams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.