Abstract

In this study, an optimal and robust fractional order PID (FOPID) controller design approach is suggested for Smith predictor based FOPID (SP-FOPID) control system design. This new design approach considers continued fraction expansion (CFE) based approximate models in the optimal design task of FOPID controllers, and this approach preserves the design optimality in control applications. For this purpose, an inverse controller loop shaping design methodology is performed in order to approximate the frequency response of a Bode’s ideal loop reference model, and robust performance CFE based FOPID controller models are obtained by solving a multi-objective optimisation problem via a genetic algorithm. Thus, the suggested algorithm can deal with several controller realisation concerns in the design task of FOPID controllers and overcome real-world controller performance issues related with model approximation errors and signal saturation boundaries of electronic hardware. Illustrative design examples demonstrate that the suggested design scheme can preserve design optimality and improve practical control performance in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.