Abstract
The fast multipole boundary element method (FMBEM) is an advanced BEM that leads to drastic reduction of processing time and memory requirements in a large-scale steady-state sound field analysis. In the FMBEM, hierarchical cell structure is employed to apply multipole expansion in multiple levels, and the setting of the hierarchical cell structure considerably affects the computational efficiency of the FMBEM. This paper deals with effective settings of hierarchical cell structure for taking full advantage of the FMBEM. A numerical study with objects of different shapes with the same DOF shows that both the computational complexity and the memory requirements with the FMBEM were greater for 1D-shaped objects than for 2D- or 3D-shaped ones, without a special setting of hierarchical cell structure for each problem. An effective setting for 1D-shaped objects is derived through theoretical and numerical studies, where special considerations are given to the arrangement of the cell structure and the treatment of translation coefficients between cells. This setting allows for efficient calculations not dependent on the shape of an analyzed object. A simple method to arrange hierarchical cell structure is proposed, which realizes the derived setting for arbitrarily-shaped problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.