Abstract

The statistical evolution of ensembles of random, weakly interacting waves is governed by wave kinetic equations (WKEs). To simplify the analysis, one frequently works with reduced differential models of the wave kinetics. However, the conditions for deriving such reduced models are seldom justified self-consistently. Here, we derive a reduced model for the wave kinetics of the Schrödinger–Helmholtz equations in two spatial dimensions, which constitute a model for the dynamics of light in a spatially nonlocal, nonlinear optical medium. This model has the property of sharply localizing the frequencies of the interacting waves into two pairs, allowing for a rigorous and self-consistent derivation of what we term the semilocal approximation model (SLAM) of the WKE. Using the SLAM, we study the stationary spectra of Schrödinger–Helmholtz wave turbulence, and characterize the spectra that carry energy downscale, and waveaction upscale, in a forced-dissipated setup. The latter involves a nonlocal transfer of waveaction, in which waves at the forcing scale mediate the interactions of waves at every larger scale. This is in contrast to the energy cascade, which involves local scale-by-scale interactions, familiar from other wave turbulent systems and from classical hydrodynamical turbulence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.