Abstract
We propose a simple pumping method to increase the effective population of cold atoms in the clock state and investigate the factors which affect the pumping efficiency in cold atom systems. We report the theory and demonstrate the corresponding experiment in an 87Rb integrating sphere cold atom clock. The experimental results show that the population of cold atoms in the Zeeman sublevel |F = 2, mF = 0〉 is approximately 1.62 times that of the result using optical pumping alone. This method can also be applied to increase the effective population in any one of the target Zeeman sublevels in other cold atom systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.