Abstract

Each carbon atom in the graphite crystal has a quadrupole moment due to the symmetry of the crystal. We show that these graphite quadrupoles, along with the polarizability of graphite, have a substantial effect on adsorption of strongly polar molecules. We present an approximate method for accounting for the change in the solid–fluid potential energy due to polar interactions with graphite. The potential function is integrated over the graphite surface using a truncated Fourier series, so that the resulting potential is analogous to the Steele 10-4-3 potential. The interactions included in this potential include dipole-induced dipole, dipole–quadrupole, and quadrupole–quadrupole interactions. Hence, the potential can be used for fluid molecules with dipole and/or quadrupole moments. Fluid–fluid multipole interactions can be computed with any model; but point multipoles must be used in the solid–fluid potential. The multipole solid–fluid potential is most accurate for nearly spherical molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.