Abstract

In this work, a spectral method based on a modification of hat functions (MHFs) is proposed to solve the fractional pantograph differential equations. Some basic properties of fractional calculus and the operational matrices of MHFs are utilized to reduce the considered problem to a system of linear algebraic equations. The greatest advantage of using MHFs is the large number of zeros in their operational matrix of fractional integration, product operational matrix and also pantograph operational matrix. This property makes these functions computationally attractive. Some illustrative examples are included to show the high performance and applicability of the proposed method and a comparison is made with the existing results. These examples confirm that the method leads to the results of convergence order O(h3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.