Abstract

The detection of maize starch content is of great significance for maize processing industry and near-infrared spectroscopy (NIRS) is an ideal rapid detection technology. However, the interference of moisture in maize is a bottleneck problem that affects the accuracy of NIRS quantitative analysis. In this study, we proposed methods based on external parameter orthogonalization (EPO) combined with wavelength selection algorithms to bring more accurate analytical results. Two groups of maize starch samples with different moisture content distributions were investigated to compare the predictive performance of NIRS models. The results showed that the model built using EPO combined with the synergy interval partial least squares (EPO-siPLS) algorithm exhibited the superior prediction accuracy, whose RMSEP/RMSEPck is improved by 9.7 % compared with that of siPLS model, 25.3 % compared with that of EPO-PLS, and 45.8 % compared with that of the PLS model. This study provides a more accurate and robust new method for rapid detection of maize starch and offers new insights for its application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.