Abstract

The performance of indirect trust computation models (based on recommendations) can be easily compromised due to the subjective and social-based prejudice of the provided recommendations. Eradicating the influence of such recommendation remains an important and challenging issue in indirect trust computation models. An effective model for indirect trust computation is proposed which is capable of identifying dishonest recommendations. Dishonest recommendations are identified by using deviation based detecting technique. The concept of measuring the credibility of recommendation (rather than credibility of recommender) using fuzzy inference engine is also proposed to determine the influence of each honest recommendation. The proposed model has been compared with other existing evolutionary recommendation models in this field, and it is shown that the model is more accurate in measuring the trustworthiness of unknown entity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.