Abstract

In this paper, we propose a method that can effectively reduce the numerical dispersion for solving the acoustic and elastic-wave equations. The method is a fourth-order Pade approximation scheme, in which the time difference operator is a rational function and a block tridiagonal system needs to be solved at each step. On the one hand, to efficiently solve a large linear system of equations we propose an explicit method for this implicit algrithom. On the other hand, to approximate the high-order spatial derivatives we use an eighth-order stereo-modelling method using wavefield displacements and their gradients simultaneously. For this new method, we investigate some mathematical properties including the stability, errors and the numerical dispersion relationship for 1D and 2D cases. We also present numerical results computed by the Pade approximation and compare them with the eighth-order Lax–Wendroff correction method and the eighth-order staggered-grid method. Numerical results show that the high-order Pade approximation scheme can effectively suppress the numerical dispersion caused by discretizing the wave equations when coarse spatial grids are used or models have strong velocity contrasts between adjacent grids. In contrast to other high-order finite-difference methods, the new method takes substantially less computational time and requires less memory because large spatial and time increments can be used. Thus the high-order Pade approximation method can potentially be used to solve large-scale wave propagation problems and seismic tomography based on the wave equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.