Abstract
In this study, a novel and simple strategy is proposed based on 3D network formed by easily blending polysaccharide carrageenan (Car) and fucoidan (Fuc) without a crosslinker. The Fuc/Car dual coating effectively assists the self-assembly of soy protein-isolated (SPI)/curcumin (Cur, C) composite microcapsules (SPI/C) and achieves an excellent curcumin encapsulation efficiency (EE) up to 95.28% with a 4.16% loading capacity (LC) under optimal conditions. The resulting nanocomposites achieved a satisfying redispersibility in aqueous solution and enhanced the water solubility with a lower size dispersity index (PDI) of 0.12 and a larger zeta potential of -29.67 mV. The Fuc/Car double-layer network not only dramatically improved its thermal stability and photostability, but also provided controlled release and enhanced antioxidant activity in in vitro conditions. The underlying mechanism of the self-assembly of the curcumin-loaded nanoparticles was also addressed. The results proved the feasibility of the encapsulation of unstable hydrophobic bioactive substances (curcumin) with the dual anionic polysaccharide Fuc/Car co-stabilized SPI nanoparticles. This study paves the way for an alternative way of developing novel curcumin delivery systems and will have broad prospects in the pharmaceutical industries.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.