Abstract
Underwater creatures play a vital role in maintaining the delicate balance of the ocean ecosystem. In recent years, machine learning methods have been developed to identify underwater biologicals in the complex underwater environment. However, the scarcity and poor quality of underwater biological images present significant challenges to the recognition of underwater biological targets, especially multi-target recognition. To solve these problems, this paper proposed an ensemble method for underwater biological multi-target recognition. First, the CutMix method was improved for underwater biological image augmentation. Second, the white balance, multiscale retinal, and dark channel prior algorithms were combined to enhance the underwater biological image quality, which could largely improve the performance of underwater biological target recognition. Finally, an improved model was proposed for underwater biological multi-target recognition by using a mask region-based convolutional neural network (Mask-RCNN), which was optimized by the soft non-maximum suppression and attention-guided context feature pyramid network algorithms. We achieved 4.97 FPS, the mAP was 0.828, and the proposed methods could adapt well to underwater biological multi-target recognition. The recognition effectiveness of the proposed method was verified on the URPC2018 dataset by comparing it with current state-of-the-art recognition methods including you-only-look-once version 5 (YOLOv5) and the original Mask-RCNN model, where the mAP of the YOLOv5 model was lower. Compared with the original Mask-RCNN model, the mAP of the improved model increased by 3.2% to 82.8% when the FPS was reduced by only 0.38.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.