Abstract

IntroductionIt is challenging to diagnose and manage incidentally detected pulmonary subsolid nodules due to their indolent nature and heterogeneity. The objective of this study is to construct a decision tree-based model to predict malignancy of a subsolid nodule based on radiomics features and evolution over time. Materials and MethodsWe derived a training set (2947 subsolid nodules), a test set (280 subsolid nodules) from a cohort of outpatient CT scans, and a second test set (5171 subsolid nodules) from the National Lung Cancer Screening Trial (NLST). A Computer-Aided Diagnosis system (CADs) automatically extracted 28 preselected radiomics features, and we calculated the feature change rates as the change of the quantitative measure per time unit between the prior and current CT scans. We built classification models based on XGBoost and employed 5-fold cross validation to optimize the parameters. ResultsThe model that combined radiomics features with their change rates performed the best. The Areas Under Curve (AUCs) on the outpatient test set and on the NLST test set were 0.977 (95% CI, 0.958-0.996) and 0.955 (95% CI, 0.930-0.980), respectively. The model performed consistently well on subgroups stratified by nodule diameters, solid components, and CT scan intervals. ConclusionThis decision tree-based model trained with the outpatient dataset gives promising predictive performance on the malignancy of pulmonary subsolid nodules. Additionally, it can assist clinicians to deliver more accurate diagnoses and formulate more in-depth follow-up strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call