Abstract

We demonstrate an efficient possibility to synthesize vertically aligned pure zinc oxide (ZnO) and Co-doped ZnO nanorods (NRs) using the low-temperature aqueous chemical synthesis (90 °C). Two different mixing methods of the synthesis solutions were investigated for the Co-doped samples. The synthesized samples were compared to pure ZnO NRs regarding the Co incorporation and crystal quality. Electron paramagnetic resonance (EPR) measurements confirmed the substitution of Co2+ inside the ZnO NRs, giving a highly anisotropic magnetic Co2+ signal. The substitution of Zn2+ by Co2+ was observed to be combined with a drastic reduction in the core-defect (CD) signal (g ∼ 1.956) which is seen in pure ZnO NRs. As revealed by the cathodoluminescence (CL), the incorporation of Co causes a slight red-shift of the UV peak position combined with an enhancement in the intensity of the defect-related yellow-orange emission compared to pure ZnO NRs. Furthermore, the EPR and the CL measurements allow a possible model of the defect configuration in the samples. It is proposed that the as-synthesized pure ZnO NRs likely contain Zn interstitial (Zni+) as CDs and oxygen vacancy (VO) or oxygen interstitial (Oi) as surface defects. As a result, Co was found to likely occupy the Zni+, leading to the observed CDs reduction and hence enhancing the crystal quality. These results open the possibility of synthesis of highly crystalline quality ZnO NRs-based diluted magnetic semiconductors using the low-temperature aqueous chemical method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call