Abstract

The chemical/thermal in situ reduction of graphene oxide (GO) in GO-polymer composite is consistently challenged by the presence of undesirable chemical residues/temperature degradation restriction of the polymer. In order to tackle this problem, an effective in situ supercritical fluid reduction strategy comprising of supercritical CO2 and ethanol binary system under N2 atmosphere was developed by stepwise comparison of different reduction methods for graphene oxide-polyvinyl alcohol (GO-PVA) composite films. The resulting rGO-PVA composite films comprising of 10 wt% rGO showed an electrical conductivity of 51.7 S/m-and Young's modulus of 3.1 GPa. Different weight loadings of GO in the polymer composite films were found to affect the electrical and mechanical properties of the resulting rGO-polymer films. The in situ supercritical fluid reduction strategy was demonstrated further for successfully obtaining rGO-polyethylene glycol films (rGO-PEG) and rGO-PVA fiber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.