Abstract
BackgroundAtrial fibrillation is a type of persistent arrhythmia that can lead to serious complications. Therefore, accurate and quick detection of atrial fibrillation by surface electrocardiogram has great importance on further treatment. The practical electrocardiogram signals contain various interferences in different frequencies, such as myoelectricity interference, power interference and so on. Detection speed and accuracy largely depend on the atrial fibrillation signal features extracted by the algorithm. But some of the discovered atrial fibrillation features are not well distinguishable, resulting in poor classification effect.MethodsThis paper proposed a high distinguishable frequency feature—the frequency corresponding to the maximum amplitude in the frequency spectrum. We used the R–R interval detection method optimized with the mathematical morphology method and combined with the wavelet transform method for analysis. According to the two features—the maximum amplitude in the frequency spectrum and R–R interval irregular, we could recognize atrial fibrillation signals in electrocardiogram signals by decision tree classification algorithm.ResultsThe data used in the experiment come from the MIT-BIH database, which is publicly accessible via the web and with ethical approval and consent. Based on the input of time-domain and frequency-domain features, we classified sinus rhythm signals and AF signals using the decision tree generated by classification and regression tree (CART) algorithm. From the confusion matrix, we got the accuracy was 98.9%, sensitivity was 97.93% and specificity was 99.63%.ConclusionsThe experimental results can prove the validity of the maximum amplitude in the frequency spectrum and the practicability and accuracy of the detection method, which applied this frequency-domain feature. Through the detection method, we obtained good accuracy of classifying sinus rhythm signals and atrial fibrillation signals. And the sensitivity and specificity of our method were pretty good by comparison with other studies.
Highlights
Atrial fibrillation is a type of persistent arrhythmia that can lead to serious complications
The above two features have become the basis of the current automatic detection Atrial fibrillation (AF) technology [2]
We obtained the frequency corresponding to the maximum amplitude in the frequency spectrum (MAiFS) by fast Fourier transform of the characteristic waveform
Summary
Atrial fibrillation is a type of persistent arrhythmia that can lead to serious complications. Accurate and quick detection of atrial fibrillation by surface electrocardiogram has great importance on further treatment. The practical electrocardiogram signals contain various interferences in different frequencies, such as myoelectricity interference, power interference and so on. Detection speed and accuracy largely depend on the atrial fibrillation signal features extracted by the algorithm. Some of the discovered atrial fibrillation features are not well distinguishable, resulting in poor classification effect. When AF occurs, the regular order of atrial. Compared with other bioelectrical signals, ECG signals are easier to monitor and have morphological regularity. The above two features have become the basis of the current automatic detection AF technology [2]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.